Journal of Organometallic Chemistry, 246 (1983) 141-149 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

TRIPELDECKER-KOMPLEXE

III *. KOMPLEXIERUNGSREAKTIONEN VON 1-PHENYL-4,5-DIHYDROBOREPIN UNTER GERÜSTUMLAGERUNG. SYNTHESE UND STRUKTUR VON TRIPELDECKER-KOMPLEXEN DES MANGANS UND DES EISENS MIT 2-ETHYL-1-PHENYLBOROL ALS BRÜCKENLIGAND **

G.E. HERBERICH*, J. HENGESBACH ***,

Institut für Anorganische Chemie der Technischen Hochschule Aachen, Professor-Pirlet-Strasse 1, D-5100 Aachen (Bundesrepublik Deutschland)

G. HUTTNER,

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät für Chemie der Universität Konstanz, Postfach 5560, D-7750 Konstanz (Bundesrepublik Deutschland)

A. FRANK und U. SCHUBERT ****

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-8046 Garching (Bundesrepublik Deutschland)

(Eingegangen den 15. November 1982)

Summary

The thermal reaction of 1-phenyl-4,5-dihydroborepin (I) with $Mn_2(CO)_{10}$ produces the triple-decked complex $(OC)_3 Mn(\mu-L)Mn(CO)_3$ (III) where L is 2-ethyl-1-phenylborole. The analogous system $I/[(C_5H_5)Fe(CO)_2]_2$ inter alia yields the triple-decked sandwich complex $(C_5H_5)Fe(\mu-L)Fe(C_5H_5)$ (VI) and the borabenzene derivative $(C_5H_5)Fe(2-CH_3C_5H_4BC_6H_5)$ (VIII). The structures of the 30-electron compounds III and VI have been determined by X-ray analyses.

Zusammenfassung

Die thermische Umsetzung von 1-Phenyl-4,5-dihydroborepin (I) mit $Mn_2(CO)_{10}$ ergibt den Tripeldecker-Komplex (OC)₃Mn(μ -L)Mn(CO)₃ (III), wo L 2-Ethyl-1-

Für II. Mitteilung siehe Lit. I.

^{**} Vorgetragen: Third International Meeting on Boron Chemistry, München und Ettal (Bundesrepublik Deutschland), 5.-9. Juli 1976; Third European Inorganic Chemistry Symposium, Cortona (Italien), 24.-28. April 1978.

^{***} Nach Unterlagen aus dem Nachlass.

^{****} Jetzige Anschrift: Institut f
ür Anorganische Chemie, Universit
ät W
ürzburg, Am Hubland, D-8700 W
ürzburg (Bundesrepublik Deutschland).

phenylborol ist. Das analoge System $I/[(C_5H_5)Fe(CO)_2]_2$ liefert u.a. den Tripeldecker-Sandwichkomplex $(C_5H_5)Fe(\mu-L)Fe(C_5H_5)$ (VI) und das Borabenzol-Derivat $(C_5H_5)Fe(2-CH_3C_5H_4BC_6H_5)$ (VIII). Die Strukturen der 30-Elektronen-Verbindungen III und VI wurden röntgenographisch bestimmt.

Unter milden Reaktionsbedingungen vermag 1-Phenyl-4,5-dihydroborepin (I) [2-4] mit Übergangsmetall-Substraten Komplexe wie die Tricarbonyleisen-Verbindung II zu bilden, in denen die Siebenringstruktur erhalten geblieben ist [4,5]. Unter drastischen Reaktionsbedingungen entstehen dagegen unter Gerüstumlagerung Komplexe mit fünf- und sechsgliedrigen Ringliganden. Wie bereits kurz berichtet, liefert I mit Mn₂(CO)₁₀ in siedendem Mesitylen den Tripeldecker-Komplex III [6], während mit Fe(CO)₅ unter den gleichen Bedingungen der Borol-Komplex IV und ein Gemisch der stereoisomeren Borabenzol-Derivate V gebildet werden [7]. In der vorliegenden Arbeit behandeln wir die Systeme I/Mn₂(CO)₁₀ und I/[(C₅H₅)-Fe(CO)₂]₂.

Präparative Ergebnisse

(亚)

Die Reaktion von 1-Phenyl-4,5-dihydroborepin (I) mit $Mn_2(CO)_{10}$ in siedendem Mesitylen ergibt als einziges wesentliches Produkt den Mangan-Tripeldecker-Komplex III gemäss Gl.1. Bei der chromatographischen Aufarbeitung sind mehrere Nebenprodukte erkennbar, doch wurde wegen der geringen Ausbeuten dieser Produkte auf eine nähere Untersuchung verzichtet.

(又)

$$Mn_2(CO)_{10} + I \rightarrow III + 4CO$$

Die analoge Reaktion von I mit $[(C_5H_5)Fe(CO)_2]_2$ liefert als Hauptprodukte neben Ferrocen die beiden Eisen-Tripeldecker-Sandwichkomplexe VI und VII mit einem Ethyl-Substituenten bzw. einer Vinyl-Gruppe an C(2) des zentralen Borol-

Liganden und den (Borinato)eisen-Komplex VIII gemäss Gl. 2-4. Ferner entstehen zahlreiche, zum Teil auch identifizierte Nebenprodukte, die zu erheblichen Trennproblemen führen.

$$\left[(C_5H_5)Fe(CO)_2 \right]_2 \rightarrow Fe(C_5H_5)_2 + Fe + 4CO$$
⁽²⁾

$$\left[(C_5H_5)Fe(CO)_2 \right]_2 + I \rightarrow VI + 4CO \tag{3a}$$

$$\left[(C_{5}H_{5})Fe(CO)_{2} \right]_{2} + I \rightarrow VII + 4CO + 2\langle H \rangle$$
(3b)

$$\left[(C_5H_5)Fe(CO)_2 \right]_2 + 2I \rightarrow VIII + 4CO + 2\langle H \rangle$$
(4)

Das Molverhältnis $[(C_5H_5)Fe(CO)_2]_2/I$ und die Reaktionsführung üben einen starken Einfluss auf die Produktzusammensetzung aus. Mit steigendem Überschuss an $[(C_5H_5)Fe(CO)_2]_2$ steigt die Ausbeute an Tripeldecker-Gemisch (VI + VII) an, während gleichzeitig die Bildung des (Borinato)eisen-Komplexes VIII unterdrückt wird. Dabei haben die Reaktionen 3 und 4 den Charakter von Parallelreaktionen, da einmal gebildetes VIII nicht durch erneute Umsetzung mit $[(C_5H_5)Fe(CO)_2]_2$ in die Eisen-Tripeldecker-Sandwichkomplexe VI und VII umgewandelt werden kann. Das Verhältnis VI/VII (Ethyl/Vinyl) schwankt stark und in nicht völlig reproduzierbarer Weise; in Xylol als Lösungsmittel, also bei niedrigerer Reaktionstemperatur, entsteht hauptsächlich die Vinyl-Verbindung VII.

Da die beiden Komplexe VI und VII chromatographisch nicht getrennt werden konnten, haben wir versucht, das Tripeldecker-Gemisch (VI + VII) zu hydrieren, um so die Ethyl-Verbindung VI in Substanz zu erhalten und charakterisieren zu können. Der Versuch der Hydrierung mit Wilkinson-Katalysator führte zur Zerstörung der Tripeldecker-Komplexe; die Hydrierung gelingt jedoch problemlos durch Behandlung mit Diisobutylaluminiumhydrid und nachfolgende Protolyse.

Die hier beschriebenen Umlagerungen des Ligandengerüsts von I beruhen auf der Fähigkeit von Organoboranen, durch eine Folge von Dehydroborierung und Hydroborierung zu isomerisieren. So setzen sich z.B. Borepane bei 160°C mit dazu isomeren 2-Methylborinanen und 2-Ethylborolanen ins Gleichgewicht [8]. Wir nehmen an, dass I im Zuge der Komplexbildung zunächst durch übergangsmetallkatalysierte Doppelbindungsisomerisierung in Komplexe des unbekannten 1-Phenyl-2,3dihydroborepins (IX) übergeht. Dieses kann dann Ringkontraktionen durch die eben genannte Folge von Dehydroborierung und Hydroborierung erleiden. Es dürfte jedoch schwierig sein, diese plausiblen Überlegungen an den Systemen $I/Mn_2(CO)_{10}$ und $I/[(C_5H_5)Fe(CO)_2]_2$ experimentell weiter zu untermauern.

Die Struktur der neuen Komplexe

Die Geschichte der Tripeldecker-Komplexe und der gegenwärtige Stand dieser Chemie sind in mehreren Übersichtsartikeln referiert worden [9–12]. Zum Zeitpunkt der ersten Darstellung von III und VI im Jahr 1975 waren in der Literatur nur drei Typen von Tripeldecker-Komplexen in Arbeiten von Werner und Grimes behandelt worden. Aus diesem Grund wurde die Struktur beider Komplexe III und VI durch Röntgenstrukturanalyse bestimmt. Die erhaltenen Daten sind in Tabelle 1 zusammengefasst. Die Lösung der Strukturen erfolgte konventionell; eine weitere Verfeinerung war wegen zu geringer Qualität der Kristalle nicht möglich. Die Figuren 1 und 2 geben eine Ansicht der Komplexe III und VI.

Beide Komplexe III und VI zeigen Tripeldecker-Strukturen mit einer pentagonalen Bipyramide als Cluster-Gerüst. Der Ethyl-Substituent ist an C(2) des zentralen Borol-Liganden (d.i. C(1) in den Strukturdaten) gebunden; dieser Befund deutet darauf hin, dass die C₆-Kette des Dihydroborepins I im Zuge der Produktbildung

Fig. 1. Eine Ansicht von III mit der Numerierung der Atome.

Mn(1)-Mn(2) 353.3(2) B-C(1) 155(2) C(1)-C(2) 155(2) C(1)-C(2) 146(1) C(2)-C(3) 146(1) C(3)-C(4) 146(1) C(3)-C(4) 146(1) C(4)-E(4) 146(1) C(3)-C(4) 146(1) C(4)-E(4) 146(1) C(4)-E(4) 146(1) C(4)-E(4) 146(1) C(4)-E(4) 158(2) B-C(31) 158(2) C(1)-C(4) 158(2) Mn-C[C0] 114(1) Mn(1)-C(1) 213(2) Mn(1)-C(2) 213(1) Mn(1)-C(2) 213(1) Mn(1)-C(2) 213(1)			Atome	Abstand (pm)	(
$\begin{array}{c} c_{11} - c_{12} \\ c_{11} - c_{12} \\ c_{12} - c_{13} \\ c_{13} - c_{13} \\ c_{13$	(2)		Fe(1)-Fe(2)	326.8(3)		
C(2)-C(3) 140(1) C(3)-C(4) 146(1) C(4)-B 158(2) C(4)-B 158(2) B-C(31) 158(2) C(1)-C(41) 158(2) C(1)-C(41) 158(2) C(1)-C(41) 158(2) C(1)-C(41) 152(2) Mn-C(C0] 114(1) Mn-C(C0] 114(1) Mn(1)-C(2) 213(1) Mn(1)-C(2)			C(1)-C(2)	165(2) 142(2)		
C(3)-C(4) $146(1)$ C(4)-B $158(2)$ C(4)-B $158(2)$ B-C(31) $158(2)$ C(1)-C(41) $152(2)$ C(1)-C(41) $152(2)$ Mn-C[C0] $114(1)$ Mn-C[C0] $114(1)$ Mn(1)-B $225(1)$ Mn(1)-C(2) $213(1)$ Mn(1)-C(2) $213(1)$			C(2)-C(3)	146(2)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		C(3)-C(4)	143(2)		
B-C(31) 160(2) C(1)-C(41) 152(2) C(1)-C(41) 152(2) C-C[C ₆ H ₅] 131(2)- Mn-C[CO] 114(1)- C[CO]-O[CO] 114(1)- Mn(1)-C(1) 219(1) Mn(1)-C(2) 213(1) Mn(1)-C(2) 213(1) Mn(1)-C(2) 213(1)	•		C(4)-B	151(2)		
C(1)-C(41) 152(2) C-C(C ₆ H ₅] 131(2)- Mn-C(CO] 114(1)- C(CO]-O(CO] 114(1)- Mn(1)-C(1) 219(1) Mn(1)-C(2) 213(1) Mn(1)-C(2) 213(1) Mn(1)-C(2) 213(1)			B-C(31)	154(2)		
C-C[C ₆ H ₅] 131(2)- Mn-C[CO] 176(1)- C[CO]-O[CO] 114(1)- Mn(1)-C(1) 219(1) Mn(1)-C(2) 213(1) Mn(1)-C(2) 213(1) Mn(1)-C(2) 213(1)			C(1)-C(41)	143(2)		
Ma-C[C0] 176(1)- C[C0]-O[C0] 114(1)- Ma(1)-B 225(1) 114(1)- Ma(1)-C(1) 219(1) Ma(1)-C(2) 213(1) Ma(1)-C(2) 213(1))142(2)		C-C[C,H,]	138(2)-144(2)	•	
C[CO]-O[CO] 114(1)- Mn(1)-B 225(1) Mn(1)-C(1) 219(1) Mn(1)-C(2) 213(1) Mn(1)-C(2) 213(1))-180(1)		c-clc,H,]	134(2)140(2)		
Mn(1)–B 225(1) Mn(1)–C(1) 219(1) Mn(1)–C(2) 213(1) Mn(1)–C(2) 213(1))-117(1)					
Mn(1)-C(1) 219(1) Mn(1)-C(2) 213(1) Mn(1) C(2) 210(1)	Mn(2)-B	224(1)	Fe(1)-B	218(2)	Fe(2)-B	211(2)
Mn(1)-C(2) 213(1) Mn(1)-C(2) 213(3)	Mn(2)-C(1)	222(1)	Fe(1)-C(1)	209(1)	Fe(2)-C(1)	207(2)
Ma(1)_C/3)	Mn(2)-C(2)	214(1)	Fe(1)-C(2)	203(1)	Fe(2)-C(2)	205(1)
	Mn(2)-C(3)	212(1)	Fe(1)-C(3)	203(1)	Fe(2)-C(3)	205(1)
Mn(1)-C(4) 216(1)	Mn(2)-C(4)	217(1)	Fe(1)-C(4)	206(1)	Fe(2)-C(4)	205(1)
Atome Wink	kel (°)		Atome		Win	tel (°)
C(1)-B-C(4) 102.6	6(8)	n o vez e ne	C(1)-B-C(4)	na mana ina mana mangang ng kana kana kana kana na mana mangang kana kana na mangang kana kana na mangang kana)9.66	11)
C(1)-B-C(31) 129.1	1(9)		C(1)-B-C(31)		128.5	(12)
C(4)-B-C(31) 128.3	3(9)		C(4)-B-C(31)		131.2	(13)
B-C(1)-C(2) 108.2	2(8)		B-C(1)-C(2)		108.3	(12)
C(1)-C(2)-C(3) 111.4	4(7)		C(1)-C(2)-C(3)		110.6	(12)
C(3)-C(3)-C(4) 110.2	2(9)		C(2)-C(3)-C(4)		108.5	(12)
C(3)-C(4)-B 107.6	6(8)		C(3)-C(4)-B		113.0	(12)
B-C(1)-C(41) 129.0	0(9)		B-C(1)-C(41)		128.4	(12)
dcol-wn-clcol 87.60	(5)-92.0(6)					

TABELLE 1. STRUKTURDATEN DER TRIPELDECKER-KOMPLEXE III UND VI "

" Weitere Daten sind auf Anforderung erhältlich.

Fig. 2. Eine Ansicht von VI mit der Numerierung der Atome.

intakt bleibt. Ganz entsprechend befindet sich auch die Methyl-Gruppe in VIII an C(2) gebunden, was aus den ¹H- und ¹³C-NMR-Daten dieser Verbindung in trivialer Weise folgt.

Bemerkenswerterweise stehen in III beide $Mn(CO)_3$ -Gruppen näherungsweise auf Deckung mit dem B-Atom des Borol-Rings. Die Abweichung von der ideal ekliptischen Konformation beträgt 6.8° für C(12) und 1.1° für C(23). Da man aus sterischen Gründen eine gestaffelte Konformation bezüglich des B-Atoms erwarten müsste, sind hier offenbar in erster Linie elektronische Einflüsse konformationsbestimmend.

Beide Komplexe III und VI sind 30-Elektronen-Systeme und gehorchen damit der 30-Elektronen-Regel [13] und den Cluster-Regeln für Metallocarborane [14]. Ihre pentagonal-bipyramidale Struktur ist das für 30-Elektronen-Systeme erwartete closo-Polyeder.

Konformationsprobleme in Übergangsmetall-Komplexen sind in grosser Breite mithilfe von MO-Methoden analysiert worden [15,16], unter anderem auch für einige Tricarbonylmetall-Komplexe bor-heterocyclischer Liganden [17]. Diese Überlegungen lassen sich leicht auf den Tripeldecker-Komplex III ausdehnen. Dazu denkt man sich III in erster grober Näherung zusammengesetzt aus zwei $[Mn(CO)_3]^+$ -Fragmenten und einem Borol-Dianion. Bei d^6 -Komplexfragmenten muss dann die Region höchster Elektronendichte des Borol-Dianions, d.i. die Mitte zwischen C(3) und C(4) des Rings, *trans*-ständig zu je einer CO-Gruppe der $[Mn(CO)_3]^+$ -Fragmente sein. Diese Erwartung stimmt mit dem oben geschilderten Strukturbefund überein.

Experimentelles

Alle Versuche wurden mithilfe der üblichen Schlenktechnik unter Stickstoff als Schutzgas durchgeführt. Lösungsmittel wurden nach gängigen Vorschriften gereinigt, getrocknet und von O_2 -Spuren befreit. Die präparativen Vorschriften sind nicht optimiert.

1. μ-(2-Ethyl-1-phenylborol)-bis(tricarbonylmangan) (III)

Ein Gemisch von 1.00 g (5.95 mmol) 1-Phenyl-4,5-dihydroborepin (I) [2–4] und 2.32 g (5.95 mmol) $Mn_2(CO)_{10}$ in 20 ml Mesitylen wird in einem Schlenkrohr bei einer Badtemperatur von 165–170°C erhitzt, bis die Gasentwicklung praktisch beendet ist (30–70 h, stark abhängig von der Badtemperatur). Man zieht das Mesitylen bei 10^{-4} bar und bis 50°C ab und chromatographiert den festen Rückstand an Silica-Gel (Säule: 40×1.2 cm; mit Al-Folie gegen Lichteinwirkung geschützt) mit Pentan und zuletzt mit Pentan/Et₂O-Gemisch (100/1). Die erste hellgelbe Zone ergibt 0.46 g (1.18 mmol, 20%) unumgesetztes $Mn_2(CO)_{10}$. Eine folgende hellgelbe Zone (0.08 g) und eine orangefarbene Zone (0.06 g) werden verworfen. Die vierte rotbraune Zone ergibt durch Abziehen des Solvens und Kristallisation aus Pentan 1.25 g (2.80 mmol; 47%, bezogen auf den Ansatz; 59%, bezogen auf umgesetztes $Mn_2(CO)_{10}$) braunrote Nadeln; Schmp. 119–120°C, Zers. $\geq 200^{\circ}$ C; sehr gut löslich in CH₂Cl₂ und CHCl₃, gut löslich in Aceton und Benzol, mässig löslich in Pentan; in Lösung lichtempfindlich. Gef.: C, 48.45; H, 2.97. C₁₈H₁₃BMn₂O₆ ber.: C, 48.48; H, 2.94%.

Massenspektrum (50 eV): Lit. 6. ¹H-NMR-Spektrum (δ -Werte (ppm), in C₆D₆, 100 MHz): 7.57 m (2H), 7.34 m (3H), 4.24 t (3-H), 3.57 dd (4-H), 2.16 dd (5-H), J_{34} 1.8, J_{45} 3.7, J_{35} 1.3 Hz; 1.81 q (CH₂), 0.77 t (CH₃), J 7.3 Hz. Die Zuordnung der Protonen des Borol-Rings ist nur mithilfe zusätzlicher Daten möglich. Im ¹³C-NMR-Spektrum (δ -Werte (ppm), bezogen auf TMS, in Aceton, 67.88 MHz) findet man für die C-Atome des Borol-Rings zwei scharfe und ein durch ¹¹B-¹³C-Quadrupol-Kopplung verbreitertes Signal, 84.6 (C(3)), 68.2 (C(4)), 51.1br (C(5)), (entsprechend der C(2)-Stellung der Ethyl-Gruppe. Selektive Heteroentkopplung verknüpft dann die ¹³C- und ¹H-Signale einzelner CH-Gruppen des Borol-Rings zu Paaren. Das Paar 51.1 br/2.16 dd ist wegen der Quadrupol-Verbreiterung eindeutig der C(5)–H-Gruppe zuzuordnen. Die ¹H–¹H-Kopplung von 3.7 Hz führt dann zu dem Paar 68.2/3.57 dd der C(4)–H-Gruppe und für die C(3)–H-Gruppe verbleibt das Paar 84.6/4.24 t. Diese Zuordnung korrigiert unsere vorläufige Zuordnung in Lit. 6. ¹¹B-NMR-Spektrum und IR-Daten: Lit. 6.

Strukturbestimmung: III kristallisiert orthorhombisch mit a 1429(1), b 1670(1) und c 1541(1) pm, Z = 8 und d_{ber} . 1.610 g cm⁻³; Raumgruppe *Pbca*. Gemessen wurden 1113 unabhängige Reflexe ($I \ge 3.2 \sigma$). Die konventionelle Lösung wurde bis R_1 5.7% verfeinert; dabei wurden die Temperaturfaktoren nur für die Mn- und O-Atome anisotrop verfeinert.

2. Umsetzung von 1-Phenyl-4,5-dihydroborepin (I) mit $[(C_5H_5)Fe(CO)_2]_2$

Ein Gemisch von 1.00 g (5.95 mmol) I [2-4] und 10.6 g (30.0 mmol) $[(C_5H_5)Fe(CO)_2]_2$ in 50 ml Mesitylen wird bei einer Badtemperatur von 170–175°C erhitzt. Gegen Ende der Gasentwicklung (2.8 l, ca. 85%) nach 2 d fügt man weitere 5.3 g (15.0 mmol) und nach weiteren 3 d nochmals 3.3 g (9.3 mmol) Fe-Komplex zu

und erhitzt nochmals 2 d (Gesamtgasvolumen ca. 5.5 l). Man filtriert durch wenig Al_2O_3 , wäscht mit CH_2Cl_2 nach und zieht dann das Lösungsmittel bei 10^{-4} bar und bis 50°C Badtemperatur ab. Die Hauptmenge des Ferrocens wird durch Kristallisation aus CH_2Cl_2 /Pentan abgetrennt. Man chromatographiert dann an Al_2O_3 (sauer, mit 4% H_2O desaktiviert; Säule: 70×1.7 cm) mit Pentan. Als erste Zone wird Ferrocen eluiert; zusammen mit dem Material aus der Vortrennung werden ca. 9.5 g (51 mmol, 94%) Ferrocen erhalten. Die zweite, intensiv dunkelgrüne Zone liefert 0.83 g (ca. 2.0 mmol; 34% bezogen auf 1) rohes Tripeldecker-Gemisch VI/VII (55/45 nach ¹H-NMR-Spektrum). Eine Zwischenfraktion mit 0.06 g Material wird verworfen. Die folgende gelbe Zone wird unter Zusatz von 2–3% Et₂O eluiert und liefert 0.27 g (0.94 mmol; 16% bezogen auf 1) rohes, öliges VIII. Auf der Säule befinden sich dann noch mehrere Zonen mit ca. 0.4 g Material, darunter unumgesetztes [(C_5H_5)Fe(CO)₂]₂ und [(C_5H_5)Fe(CO)]₄ [18], auf deren Eluierung verzichtet wird.

3. µ-(2-Ethyl-1-phenylborol)-bis[(cyclopentadienyl)eisen] (VI)

(a) Das rohe Tripeldecker-Gemisch VI/VII von Vorschrift 2 wird erneut an Al_2O_3 (wie oben; Säule: 100×3.2 cm) mit Pentan chromatographiert und lässt sich dann gut aus Pentan auskristallisieren.

(b) Man erhitzt 0.82 g (2.00 mmol) Tripeldecker-Gemisch VI/VII in 20 ml Octan mit 3 ml (3 mmol) käuflicher Diisobutylaluminiumhydrid-Lösung in Hexan 24 h auf 120°C. Man kühlt, hydrolysiert mit 0.5 ml CH₃OH, fügt nach Ende der Gasentwicklung noch 1.0 ml Eisessig zu und filtriert nach 10 min durch Al_2O_3 . Abziehen der Lösungsmittel und Kristallisation aus Pentan liefert dann mit sehr guter Ausbeute schwarz-grüne Kristalle von reinem Ethyl-Derivat VI; Schmp. 115–116°C, bei 220°C unzersetzt; gut löslich in den meisten üblichen organischen Lösungsmitteln, mässig löslich in Pentan; in Lösung und auf Al_2O_3 luftempfindlich. Gef.: C, 64.46; H, 5.55; Fe, 27.23. $C_{22}H_{23}BFe_2$ ber.: C, 64.46; H, 5.66; Fe, 27.25%.

Massenspektrum (70 eV): m/e (I_{rel} , ab 10%) 410 (100; M^+), 186 (23; Fe(C₅H₅)₂⁺), 121 (43; Fe(C₅H₅)⁺). ¹H-NMR-Spektrum (δ -Werte (ppm), in C₆D₆, 270 MHz): 8.31 d (2H_o), 7.63 t (2H_m), 7.45 t (H_p); 3.93 s br (3-H), 3.74 dd (4-H), 3.59 s (C₅H₅), 2.62 d (5-H), J_{34} 1.2, J_{45} 3.1, J_{35} < 1 Hz; 2.74 q (CH₂), 1.24 t (CH₃), J 7.1 Hz; Zuordnung in Analogie zu III. ¹¹B-NMR-Spektrum (CDCl₃): δ + 4 ppm gegen ext. BF₃ · OEt₂.

Strukturbestimmung: VI kristallisiert monoklin mit a 1241(1), b 1808(1), c 913(1) pm und β 117.23(7)°, Z = 4 und d_{ber} 1.495 g cm⁻³; Raumgruppe $P2_1/c$. Gemessen wurden 1031 unabhängige Reflexe ($I \ge 3.5 \sigma$). Die konventionelle Lösung wurde bis R_1 6.9% verfeinert; dabei wurden die Temperaturfaktoren nur für die Fe-Atome anisotrop verfeinert.

4. (Cyclopentadienyl)(2-methyl-1-phenylborinato)eisen (VIII)

Das rohe Produkt von Vorschrift 2 wird erneut an Al_2O_3 (wie oben; Säule: 40 × 2.0 cm) mit Pentan chromatographiert und dann aus Pentan durch langsames Kühlen bis -80°C in ockergelben Nadeln kristallisiert; Schmp. 65-67°C, keine Zers. bis 300°C; sehr gut löslich in den üblichen organischen Lösungsmitteln, auch in Lösung kaum luftempfindlich. Gef.: C, 71.07; H, 6.08. $C_{17}H_{17}BFe$ ber.: C, 70,90; H. 5.95%.

Massenspektrum (70 eV): $m/e(I_{rel}, ab 10\%)$ 288 (18; M^+), 210 (10; 288 - C₆H₆),

147 (45; $C_6H_8BFe^+$), 119 (15; $C_4H_4BFe^+$), 91 (100; $C_6H_8B^+$ und $C_7H_7^+$), 77 (23; $C_6H_5^+$), 64 (23; $C_4H_5B^+$). ¹H-NMR-Spektrum (δ -Werte (ppm), in C_6D_6 , 100 MHz): 7.82 d (2H_o), 7.28 m (2H_m + H_p), J 8 Hz; 4.78 m (3-H, 4-H, 5-H), 4.45 d (6-H), $J_{56} \approx 8.5$ Hz; 3.59 s (C_5H_5), 1.93 s (CH₃); Zuordnung von 6-H und damit Festlegung der 2-Position des Methyl-Substituenten durch Vergleich mit (C_5H_5)-Fe(C_5H_5BR) (R = CH₃, C_6H_5) [19]. ¹¹B-NMR-Spektrum (C_6D_6): δ + 17 ppm gegen ext. BF₃ · OEt₂. ¹³C-NMR-Spektrum (δ -Werte (ppm) gegen int. TMS, in CH₂Cl₂, 67.88 MHz): 133.83 (2C_o), 126.95 (2C_m), 125.70 (C_p), 92.32 (C(3)), 88.97 (C(5)), 81.5 br (C(6)), 77.31 (C(4)), 71.03 (C_5H_5), 23.63 (CH₃); Vergleichsmaterial: Lit. 20.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit.

Literatur

- G.E. Herberich, B. Hessner, G. Huttner und L. Zsolnai, Angew. Chem., 93 (1981) 471; Angew. Chem. Internat. Edit., 20 (1981) 472.
- 2 D. Sheehan, Ph.D. Thesis, Yale University 1964; Diss. Abstr., 25 (1965) 4417.
- 3 A.J. Leusink, W. Drenth, J.G. Noltes und G.J.M. van der Kerk, Tetrahedron Lett., (1967) 1263.
- 4 G.E. Herberich, E. Bauer, J. Hengesbach, U. Kölle, G. Huttner und H. Lorenz, Chem. Ber., 110 (1977) 760.
- 5 G.E. Herberich, M. Thönnessen und D. Schmitz, J. Organometal. Chem., 191 (1980) 27.
- 6 G.E. Herberich, J. Hengesbach, U. Kölle, G. Huttner und A. Frank, Angew. Chem., 88 (1976) 450; Angew. Chem. Internat. Edit., 15 (1976) 433.
- 7 G.E. Herberich, J. Hengesbach, U. Kölle und W. Oschmann, Angew. Chem., 89 (1977) 43; Angew. Chem. Internat. Edit., 16 (1977) 42.
- 8 R. Köster, Adv. Organometal. Chem., 2 (1964) 257; insbesondere S. 263 und 264.
- 9 H. Werner, Angew. Chem., 89 (1977) 1; Angew. Chem. Internat. Edit., 16 (1977) 1.
- 10 R.N. Grimes, Coord. Chem. Rev., 28 (1979) 47.
- 11 W. Siebert, Adv. Organometal. Chem., 18 (1980) 301.
- 12 G.E. Herberich, in G. Wilkinson, F.G.A. Stone und E.W. Abel (Herausgeber), Comprehensive Organometallic Chemistry, Vol. 1, p. 381, Boron Ring Systems as Ligands to Metals, Pergamon Press, Oxford, 1982.
- 13 J.W. Lauher, M. Elian, R.H. Summerville und R. Hoffmann, J. Amer. Chem. Soc., 98 (1976) 3219.
- 14 K. Wade, Adv. Inorg. Chem. Radiochem., 18 (1976) 1.
- 15 T.A. Albright, Acc. Chem. Res., 15 (1982) 149.
- 16 T.A. Albright, P. Hofmann und R. Hoffmann, J. Amer. Chem. Soc., 99 (1977) 7546.
- 17 T.A. Albright und R. Hoffmann, Chem. Ber., 111 (1978) 1578.
- 18 R.B. King, Inorg. Chem., 5 (1966) 2227.
- 19 G.E. Herberich und K. Carsten, J. Organometal. Chem., 144 (1978) C1.
- 20 G.E. Herberich, B. Hessner und T.T. Kho, J. Organometal. Chem., 197 (1980) 1.